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Abstract—This paper continues previous studies on designing stabilizing control laws for a
mechanical system consisting of a wheel and a pendulum suspended on its axis. The control
objective is to simultaneously stabilize the vertical position of the pendulum and a given position
of the wheel. The difficulty of this problem is that the same control is used to achieve two
targets, i.e., stabilize the pendulum angle and the wheel rotation angle. Previously, the output
feedback linearization method was applied to this problem. The sum of the pendulum angle
and the wheel rotation angle was taken as the output. For the closed loop system to be not
only asymptotically stable in the output but also to have asymptotically stable zero dynamics,
a dissipative term was added to the output-stabilizing control law. Below, a two-parameter
modification of this law is described. Along with the dissipative term, we introduce a positive
factor. The more general parameterization allows stabilizing this system in the cases where the
control law proposed previously appeared ineffective. The properties of the new control law are
investigated, and the attraction domain is estimated. The estimation procedure is reduced to
checking the feasibility of linear matrix inequalities.

Keywords : asymptotic stabilization, inverted pendulum, estimation of the attraction domain,
linear matrix inequalities

DOI: 10.31857/S0005117924040043

1. INTRODUCTION

The mechanical system considered in this paper consists of a wheel and a pendulum suspended
on its axis. The wheel rolls on a flat surface whose intersection with the vertical plane forms the
ξ-axis (Fig. 1).

This system, as well as its sister system known as cart and pole apparatus (a cart with an
inverted pendulummounted on it), was studied in many publications on control theory; for example,
see [1–11]. A list of related research works and an analysis of the state-of-art in this area can be
found in [1]. Note that this system attracts interest as a nonlinear, unstable, and nonminimum-
phase system when examining different control design methods.

Many researchers investigated control design to stabilize the vertical position of a pendulum in
the linearized system; for example, see [2, 3, 8]. A nonlinear controller is easily designed using the
output feedback linearization method with the pendulum angle as the output [4]. However, this
solution does not settle the complete state stabilization problem since the zero dynamics remain
unstable and the position of the wheel center is not stabilized. An approach to constructing the

396



AN EXTENSION OF THE FEEDBACK LINEARIZATION METHOD 397

0

M

m

x

y

j

Fig. 1. The diagram of a pendulum on a wheel.

so-called virtual outputs was developed in [12]: stabilization of the virtual outputs ensures state
stabilization. This approach is difficult to apply in a general form.

Some approaches to solving the problem in a nonlinear statement were briefly reviewed in [1].
Teel used the theory of small gains [9]. A solution based on the time-optimal control design was
described in [10]. For the global stabilization problem, Srinivasan et al. proposed a combined
control law under which, for large initial deviations, the pendulum control ensures reaching the
local stabilizability domain [11]. Estimation of such a domain is of great importance. Obviously,
an estimate that depends on the constructed control law and the chosen Lyapunov function can be
conservative. It is topical to obtain a maximum-size estimate in the class defined by the Lyapunov
function parameters.

This problem is addressed below, in continuation of the previous studies [1]. As was demon-
strated therein, with the sum of the pendulum angle and the reduced wheel rotation angle taken as
the output, the control stabilizing this output will make the closed loop system stable, albeit not
asymptotically. The zero state (the trivial equilibrium) is stabilized by adding to the control law
a term proportional to the difference in the angular velocities of the wheel and the pendulum; this
term is interpreted as the viscous friction torque in the wheel axle. Also, the attraction domain of
the equilibrium state was estimated using a specially constructed Lyapunov function consisting of a
quadratic part and a nonlinear term [1]. The parameters of this Lyapunov function were calculated
by solving a sequence of linear matrix inequalities (LMIs).

In this paper, we propose a two-parameter modification of the control law obtained by the
output feedback linearization method. Along with the dissipative term, interpreted as the viscous
friction torque at the suspension point, we introduce a positive factor at the control law. The more
general parameterization allows stabilizing the system in the cases where the control law proposed
previously appeared ineffective. An example is given to illustrate this fact.

2. MODEL OF THE SYSTEM

We use the mathematical model described in [2] with the notations introduced in [1], including
the change of the time variable. The positive value of the angles is counted counterclockwise.

The following notations are used:

ξ is the position of the wheel center on the horizontal axis in Fig. 1;

ϕ is the angular deviation of the pendulum from the vertical axis (the pendulum angle);

l is the pendulum length;

ψ is the angle between the vertical and some distinguished wheel radius, with the zero value of
ψ corresponding to the zero value of ξ; ψ = − ξ

r
;
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m is the mass lumped at the end of the pendulum;

M , J , and r are the mass, moment of inertia, and radius of the wheel, respectively;

θ = ψ r
l
is the reduced wheel rotation angle;

U is the torque developed by the drive and applied between the pendulum and the wheel;

u = U
mgl

, where g is the acceleration of gravity;

t is the time variable, and τ = t
√

g/l is the new dimensionless independent variable;
′ is the derivative with respect to the variable τ .

Also, we denote the angular velocities by ω = ϕ′, δ = θ′, and x = (ϕ,ω, θ, δ)T. Applying the La-
grangian formalism and the independent variable τ yields the motion equations

ϕ′ = ω, (1)

ω′ = f1(x) + h1(x)u,

θ′ = δ,

δ′ = f2(x) + h2(x)u,

where

f1(x) =
sinϕ

d
[−ω2 cosϕ+ (1 + β)], (2)

f2(x) =
sinϕ

d
(ω2 − cosϕ),

h1(x) =
1

d
(cosϕ+ 1 + β),

h2(x) =
1

d
(− cosϕ− 1),

β =
M + J/r2

m
,

d =β + sin2 ϕ.

(For details, see [1].)

Denoting f = (ω, f1, δ, f2)
T and h = (0, h1, 0, h2)

T, we write system (1) as

x′ = f + hu. (3)

(For the sake of simplicity, the dependence on x is omitted here.)

3. CONTROL DESIGN TO STABILIZE THE TRIVIAL EQUILIBRIUM OF SYSTEM (1)

We choose the system output

y = ϕ+ θ (4)

and design a control law for system (1) that ensures the asymptotic stability with respect to this
output. The corresponding control design method was described, e.g., in [4, Chapter 12]. The
control law is given by

u∗(x) = −λ
2y + 2λy′ + F

H
(5)

= −dλ
2(ϕ+ θ) + 2dλ(ω + δ) + sinϕ

[

(1− cosϕ)(ω2 + 1) + β
]

β
,

F =
sinϕ

d

[

(1− cosϕ)(ω2 + 1) + β
]

, H =
β

d
. (6)
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In (5), the parameter λ is the desired exponential decay rate for the closed-loop system output.
This output will satisfy a linear second-order differential equation with the characteristic polynomial
root −λ of multiplicity 2.

System (1) closed by the control law (5) takes the form

x′ = f(x) + h(x)u∗(x), (7)

where

f(0) = 0, u∗(0) = 0,
∂h(x)

∂x

∣

∣

∣

∣

x=0
= 0.

Applying the linearization procedure to system (7) in a neighborhood of zero yields

x′ = Φx, Φ =
∂f(x)

∂x

∣

∣

∣

∣

x=0
+ h(0)

∂u∗(x)

∂x

T
∣

∣

∣

∣

∣

x=0

. (8)

We have

Φ =























0 1 0 0

−(β + 2)λ2 + 1

β
−2λ

(

β + 2

β

)

−λ2
(

β + 2

β

)

−2λ

(

β + 2

β

)

0 0 0 1

2λ2 + 1

β
4
λ

β
2
λ2

β
4
λ

β























. (9)

Let us make the linear change of variables ζ = Sx, where

S =











1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1











. (10)

In other words,
ζ1 = ϕ, ζ2 = ω, ζ3 = y, ζ4 = y′.

In the new variables, matrix (9) takes the form

Φζ = SΦS−1 =

















0 1 0 0

− 1

β
0 −λ2

(

β + 2

β

)

−2λ

(

β + 2

β

)

0 0 0 1

0 0 −λ2 −2λ

















. (11)

The characteristic polynomials of the matrices Φ and Φζ coincide. Due to the block-triangular
form of matrix (11), its spectrum consists of those of the two diagonal blocks of dimensions 2× 2.
Thus, the eigenvalues of matrix (11) are

{

− i√
β
,
i√
β
,−λ,−λ

}

, (12)

where i indicates the imaginary unit. Like Φ, the matrix Φζ has a pair of pure imaginary roots and a
multiple negative root. Under this distribution of the roots, the closed loop system is asymptotically
stable with respect to the output and has zero dynamics that are not asymptotically stable.
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Let us design a control law ensuring the asymptotic stability of system (1). In the previous
studies, the dissipative term

u∗∗(x) = u∗(x)− k(ω − δ), k > 0, (13)

was added to the control law (5), interpreted as viscous friction at the junction point of the pen-
dulum and the wheel [1].

This paper considers a more general parametric expansion of the control law (5). In addition to
the gain k, which can be of arbitrary sign, we introduce a factor s. The new control law is given by

u∗∗∗(x) = su∗(x)− k(ω − δ). (14)

In the new variables, the matrix of system (1) closed by the control law (14) and linearized in
a neighborhood of zero has the form

Φs =

















0 1 0 0

(β + 1)(1 − s)

β
− s

β
−2k

β + 2

β
−(β + 2)λ2

β
s (k − 2λs)

(β + 2)

β

0 0 0 1

1− s −2k −λ2s k − 2λs

















. (15)

The characteristic polynomial of this matrix is

N(µ, s) = det (µI − Φs) (16)

= µ4 +

(

2λs+ k
4 + β

β

)

µ3 +

(

λ2s+
β + 2

β
(s− 1) +

1

β

)

µ2 +
2λs− k

β
µ+

λ2

β
s.

Under which values of the parameters s and k does the polynomial (16) have roots with negative
real parts? To answer this question, we apply the Liénard–Chipart criterion; for example, see [14,
Section 3.5]. We compile the Hurwitz matrix





























2λs + k
4 + β

β

2λs− k

β
0 0

1 λ2s+
β + 2

β
(s− 1) +

1

β

λ2

β
s 0

0 2λs + k
4 + β

β

2λs− k

β
0

0 1 λ2s+
β + 2

β
(s− 1) +

1

β

λ2

β
s





























. (17)

The polynomial (16) is Hurwitz if and only if its coefficients are positive and the third principal
minor of matrix (17) is positive. Due to the positivity of λ and β, the coefficients of this polynomial
are positive under the conditions

−2λs
β

β + 4
< k < 2λs (18)

and

s >
β + 1

λ2β + β + 2
.
= s̄. (19)
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For the third principal minor of matrix (17), the positivity condition takes the form

det



















2λs+ k
4 + β

β

2λs − k

β
0

1 λ2s+
β + 2

β
(s − 1) +

1

β

λ2

β
s

0 2λs+ k
4 + β

β

2λs− k

β



















> 0. (20)

After necessary transformations, we obtain

β + 2

β3

{

k2
[

β + 2− (β + 4)(1 + 2λ2)s
]

− 4λsk + 4λs2
[

λβ(s− 1) + k(2− λ2β)
]}

> 0.

(Hereinafter, the computer algebra system Maxima is used [13].) Reducing by the positive fac-
tor (β + 2)/β3, we finally write this condition as

k2
[

β + 2− (β + 4)(1 + 2λ2)s
]

+ 4kλs
[

s(2− λ2β)− 1
]

+ 4λ2s2β(s− 1) > 0. (21)

The closed loop linearized system can be asymptotically stable even without the dissipative term
in the control law (14) (i.e., for k = 0.) In particular, the following result is valid.

Lemma 1. For k = 0, the polynomial (16) is Hurwitz for any

s > 1. (22)

The proof of Lemma 1 is provided in the Appendix. Thus, asymptotic stability with respect to the
output y turns into asymptotic stability with respect to the state under the control law (5) with a
gain exceeding 1.

The terms in (21) are grouped as a quadratic polynomial in k. We denote its coefficients by

c0 = β + 2− (β + 4)(1 + 2λ2)s, c1 = 4λs
[

s(2− λ2β)− 1
]

,

c2 = 4λ2s2β(s − 1).
(23)

For the sake of brevity, the dependence of the coefficients on s is omitted. We denote by s0 the
value for which c0 vanishes:

s0 =
β + 2

(β + 4)(1 + 2λ2)
. (24)

Note that

c0 < 0 for s > s0. (25)

Then we have the following result.

Lemma 2. For any λ and β > 0,

s0 < s̄ < 1. (26)

In other words, condition (19) implies the inequality c0 < 0.

The proof is postponed to the Appendix.

Now let us investigate the asymptotic stability domain of system (15) in the parameter space (s, k).
We denote this domain by Ω. Note that the boundary point (1, 0) does not belong to the domain Ω.
By Lemma 1, the segment s > 1, k = 0 belongs to Ω. How far can this domain be extended by
choosing k 6= 0 under different s satisfying condition (19)? The answer to this question is given
below.
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Fig. 2. The domain Ω corresponding to β = 3 and λ = 0.5.

Theorem 1. A point (s, k) belongs to the domain Ω if and only if (25) holds jointly with condi-

tions (18), (19),

c21 − 4c0c2 > 0, (27)

and

−c1 +
√

c21 − 4c0c2

2c0
< k <

−c1 −
√

c21 − 4c0c2

2c0
. (28)

For s = 1, a point (1, k) belongs to the domain Ω if and only if

0 < k <
2λ(1− λ2β)

1 + λ2(β + 4)
. (29)

This theorem is proved in the Appendix.

Inequality (29) coincides with the previous estimate of the gain k ensuring the asymptotic
stability of the linearized system closed by the control law (13); see [1].

Figure 2 shows an example of the domain Ω. Here, the slanted dashed lines represent the
boundary of the domain (18) whereas the vertical dashed line the boundary of the domain (19).
The solid thin line indicates the boundary of the definitional domain of inequality (21). According
to the figure, this domain has three parts with curvilinear boundaries. Only one of them satisfies
the conditions of Theorem 1, thus being the domain Ω (see shading with vertical lines).
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Fig. 3. Comparing the domain Ω and its part shown by dashed line.
This part corresponds to s = 1 and is defined by inequality (29).

For comparison, Fig. 3 presents an enlarged fragment of the domain Ω and the stability domain
defined by inequality (29) for s = 1 and the same values of the parameters β and λ. According
to the figure, introducing the parameter s into the control law (14) allows extending the stability
domain significantly. Moreover, this control law can ensure asymptotic stability for those values of
the parameters β and λ under which stabilization by the control law (13) is impossible.

Now we consider the behavior of system (1) closed by the control law (14) in the entire space
instead of a neighborhood of zero. After passing to the variables ϕ, ω, y, and y′, the closed loop
system takes the form

ϕ′ = ω, (30)

ω′ = −sβ + cosϕ+ 1

β

(

λ2y + 2λz
)

− s
1 + ω2

β
sinϕ

− k
β + cosϕ+ 1

sin2 ϕ+ β
(2ω − z)− (s− 1)

(

β + 1− ω2 cosϕ
)

sin2 ϕ+ β
sinϕ,

y′ = z,

z′ = −s
(

λ2y + 2λz
)

− k
β

sin2 ϕ+ β
(2ω − z)

− (s− 1)

(

ω2 + 1
)

(1− cosϕ) + β

sin2 ϕ+ β
sinϕ.
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System (30) can be written as

ζ ′ = Ψ(γ)ζ,

Ψ(γ) =















0 1 0 0
(γ4 − 1)

β
s− γ5(s− 1) −2γ3k −γ2λ2s γ3k − 2γ2λs

0 0 0 1
−γ6(s− 1) −2γ1k −λ2s γ1k − 2λs















,
(31)

where, due to d = β + sin2 ϕ,

γ1 =
β

d
,

γ2 =
1 + β + cosϕ

β
,

γ3 =
1 + β + cosϕ

d
,

γ4 = 1− sinϕ

ϕ
(1 + ω2),

γ5 =
1 + β − ω2 cosϕ

d

(

sinϕ

ϕ

)

,

γ6 =
(1 + ω2)(1 − cosϕ) + β

d

(

sinϕ

ϕ

)

.

(32)

Regarding the variation of the angle ϕ, we suppose the following.

Assumption 1. On the trajectories of the controlled system (1),

|ϕ| 6 ϕ0 <
π

2
, |ω| 6 ω0, (33)

where ϕ0 and ω0 are some positive constants.

System (31), equivalent to (30), is nonlinear. Along with this system, we consider the linear
time-varying system

ζ ′ = Ψ(γ(τ))ζ, (34)

where γl(τ), l = 1, · · · , 6, represent arbitrary measurable functions of the time variable τ that are
subjected only to the two-sided constraints following from the expressions (32) and Assumption 1 :

γ1(τ) ∈
[

β

d0
, 1

]

,

γ2(τ) ∈
[

1 + β + cosϕ0

β
,
2 + β

β

]

,

γ3(τ) ∈
[

1 + β + cosϕ0

d0
,
2 + β

β

]

,

γ4(τ) ∈
[

−ω2
0, 1− r0

]

,

γ5(τ) ∈
[

min

{

1 + β − ω2
0

β
,
1 + β − ω2

0 cosϕ0

d0
r0

}

,
β + 1

β

]

,

γ6(τ) ∈
[

1− cosϕ0 + β

d0
r0,max

{

1,
(1 − cosϕ0)(1 + ω2

0) + β

d0
r0

}]

,

(35)
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with d0 = β + sin2 ϕ0 and r0 =
sinϕ0

ϕ0
. For all possible values of the functions γl(τ), the solution set

of system (34) is wider than that of the nonlinear system (30). Therefore, the absolute stability
requirement for the zero (trivial) solution of system (34) in the class of functions γl(τ) subjected to
the constraints (35) will also ensure the stability of the trivial solution of system (30). Immersion
in a wider class of systems (in the sense of the solution set) yields sufficient conditions for the
stability of the trivial equilibrium of system (30). To derive such conditions, we choose a Lyapunov
function having a negative derivative for all systems (34), (35) simultaneously.

As a candidate Lyapunov function we choose

V (ζ) =
1

2
ζTPζ + α

[

1− cosϕ+
β

2
ln
(

1 + ω2
)

− ϕ2

2
− ω2β

2

]

, (36)

which is parameterized by a positive definite matrix P ≻ 0 and a nonnegative number α > 0.
(The signs ≻, ≺, �, and � mean positive and negative definiteness and positive and negative
semidefiniteness, respectively.) In the expression (36), the Taylor expansion of the nonlinear term
with the factor α starts from the third-order terms and corrects the quadratic form for better
consideration of the nonlinear properties of system (34). The expression 1− cosϕ+ β

2 ln
(

1+ω2
)

is
the first integral of the limit system introduced in [1]. The requirement that the derivative of the
function (36) along the trajectories of system (34) be negative definite for all possible values of the
functions γl(τ), l = 1, · · · , 6, from the intervals (35) will be written as a system of LMIs.

The derivative of the function (36) along the trajectories of system (34) has the form

V ′ = ζTPΨ(γ)ζ + α

[

sin ζ1ζ2 − ζ1ζ2 (37)

+
βζ2

1 + ζ22

(

γ5(1− s)ζ1 − (1 + ζ22)
s

β
sin ζ1 − 2kγ3ζ2 − λ2γ2sζ3 + (kγ3 − 2λγ2s)ζ4

)

− βζ2

(

γ5(1− s)ζ1 − (1 + ζ22 )
s

β
sin ζ1 − 2kγ3ζ2 − λ2γ2sζ3 + (kγ3 − 2λγ2s)ζ4

)]

= ζTΨ(γ)Pζ

+ α

[

ζ2
(

−2kγ3ζ2 − λ2γ2sζ3 + (kγ3 − 2λγ2s)ζ4
)

(

1

1 + ζ22
− 1

)

β − ζ1ζ2γ4

+ (s− 1)ζ1ζ2

(

1− βγ5

(

1

1 + ζ22
− 1

)

− γ4 −
sin ζ1
ζ1

)]

= ζTΨ(γ)Pζ

+ α

[

ζ2
(

−2kγ3ζ2 − λ2γ2sζ3 + (kγ3 − 2λγ2s)ζ4
)

(

1

1 + ζ22
− 1

)

β − ζ1ζ2γ4

+ (s − 1)ζ1ζ2

(

ζ22
sin ζ1
ζ1

− βγ5

(

1

1 + ζ22
− 1

))]

= ζTΨ(γ)Pζ

+ α
[

ζ2
(

−2kγ9ζ2 − λ2γ8sζ3 + (kγ9 − 2λγ8s)ζ4
)

β − γ4ζ1ζ2 + γ7(s− 1)ζ1ζ2
]

,
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where

γ0 = − ζ22
1 + ζ22

,

γ7 =
ω2 sinϕ

ϕ

(

1 +
β

(1 + ω2)

(

β + 1− ω2 cosϕ
)

d

)

,

γ8 = γ0γ2,

γ9 = γ0γ3.

For the values defined above, we have the two-sided estimates

γ0 ∈
[

− ω2
0

1 + ω2
0

, 0

]

, (38)

γ7 ∈
[

0,max

{

ω2
0r0

(

1 +
β
(

β + 1− ω2
0 cosϕ0

)

(1 + ω2
0)(β + sin2 ϕ0)

)

,
ω2
0(2 + β)

(1 + ω2
0)

}]

,

γ8 ∈
[

−ω
2
0(2 + β)

β(1 + ω2
0)
, 0

]

,

γ9 ∈
[

−ω
2
0(2 + β)

β(1 + ω2
0)
, 0

]

.

Due to the expressions (35), the parameters γ2 and γ3 achieve their maximum values simultane-

ously. Therefore, the parameters γ8 and γ9 achieve the minimum value −ω2

0
(2+β)

β(1+ω2

0
)
and the maximum

value 0 simultaneously. In this case, it suffices to keep the single parameter γ8 in the expression (37)
and write

V ′ = ζTΨ(γ)Pζ + α
[

βγ8ζ2
(

−2kζ2 − λ2sζ3 + (k − 2λs)ζ4
)

+ (γ7(s− 1)− γ4) ζ1ζ2
]

. (39)

In the next section, we represent the condition V ′ < 0 in terms of LMIs.

4. ESTIMATING THE ATTRACTION DOMAIN OF THE TRIVIAL EQUILIBRIUM

We write the Lyapunov function (36) as

V (ζ) =
1

2
ζTQ(α)ζ + α

[

1− cosϕ+
β

2
ln
(

1 + ω2
)

]

>
1

2
ζTQ(α)ζ, (40)

where Q(α) denotes the matrix

Q(α) = P − α











1 0 0 0
0 β 0 0
0 0 0 0
0 0 0 0











. (41)

By imposing the inequality

Q(α) � εI,

where ε > 0 is sufficiently small, from (40) we conclude that the function V (ζ) is positive defi-
nite. Further, the expression (39) for V ′ affinely depends on the arbitrarily varying parameters γl,
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l = 1, · · · , 8, each ranging in a closed interval. Hence, the vector γ ranges in the Cartesian prod-
uct of eight closed intervals. This set, denoted by Γ ⊂ R8, is convex and has 256 extreme points
obtained by equating the arbitrarily varying parameters γl, l = 1, · · · , 8, to their minimum and
maximum values on the closed intervals (35) and (38). The quadratic form (39), whose matrix
affinely depends on the parameters γ, is negative definite for all γ ∈ Γ if and only if it is negative
definite at the extreme points of this set, i.e., at the vectors γi. Therefore, the condition V ′ < 0
is equivalent to a system of 256 LMIs, each corresponding to one of the vectors γi, i = 1, . . . , 256.
For all possible values γi, we obtain the system of LMIs (one LMI of high dimensions)

PΨ(γi) + ΨT (γi)P − αY (γi) � 0, (42)

where

Y (γi) =



















0 γi4 − γi7(s− 1) 0 0

γi4 − γi7(s − 1) 4βγi8k βγi8λ
2s βγi8(2λs − k)

0 βγi8λ
2s 0 0

0 βγi8(2λs − k) 0 0



















.

The resulting system of LMIs may be infeasible for given values ϕ0 and ω0. We introduce a
parameter a ∈ [0, 1] and choose

ϕ0(a) = a
π

2
, ω0(a) = aω̄

for ϕ0 and ω0, where ω̄ =

√

e
4

β − 1. Each value of ϕ0(a) and ω0(a) is associated with the corre-
sponding limits of the intervals (35) and (38) and, consequently, with the 256 vectors γi(a). By
the expressions for these limits, the vectors γi(a) continuously depend on a. For a = 0, the lower
and upper limits of the intervals coincide. Therefore, for a = 0 we have

γi(0)
.
= γ0 =

[

1,
2 + β

β
,
2 + β

β
, 0,

1 + β

β
, 1, 0, 0

]T

.

Further, Ψ(γ0) = Φs due to the matrix formulas (15) and (31). According to Theorem 1, the system
of LMIs (42) is feasible for sufficiently small a > 0.

Let a∗ be the supremum of those a for which the system of LMIs

PΨ(γi(a)) + ΨT (γi(a))P − αY (γi(a)) � 0, (43)

Q(α) � εI,

tr(Q(α)) = 1

is feasible with respect to the variables P and α. The linear equation tr(Q(α)) = 1 (the unit trace
of the matrix Q(α)) has been added to normalize the solution: otherwise, the feasibility set of the
LMIs would be a cone and, together with any solution P and α, σP and σα would be another
solution for any σ > 0, including both arbitrarily large and arbitrarily small values.

The value a∗ is obtained by successively checking the feasibility of (43) for an increasing numer-
ical sequence {a}.

Thus, under Assumption 1, where ϕ0 = a∗ π
2 and ω0 = a∗ω̄, the Lyapunov function (36) has a

negative definite derivative along the trajectories of system (31). If there exists a constant c > 0
such that the set

Ωc = {ζ : V (ζ) 6 c} (44)
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is inscribed in the set

Π0 = {ζ : |ϕ| 6 ϕ0, |ω| 6 ω0} , (45)

then any trajectory of the closed loop system (31) evolving from the interior of the set Ωc remains
inside it at any time due to the negativity of the derivative V ′. As a result, if

Ωc ⊂ Π0, (46)

Assumption 1 will hold along the entire trajectory of the closed loop system (31) evolving from the
interior of the set Ωc. In other words, we have established the following result.

Theorem 2. Let the conditions of Theorem 1 be satisfied and the value a∗ be chosen as the

supremum of those a for which the LMI (43) is feasible. If the constant c is such that condition (46)
holds, then the set Ωc is the asymptotic stability domain of system (1) closed by the control law (14).

A method for finding a constant c that ensures condition (46) was described in [1].

5. AN EXAMPLE OF CONSTRUCTING THE ATTRACTION DOMAIN

Consider an example corresponding to the value β = 3. Let the parameters of the control
law (14) be λ = 0.578, k = 0, and s = 1.5 to ensure the conditions of Theorem 1. This example
is interesting because for the chosen values of the parameters β and λ, condition (29) fails, i.e.,
the mechanical system under consideration cannot be stabilized by the control law (13) under any
value of the parameter k. However, this system can be stabilized by the control law (14) with s > 1
and k = 0. Checking the feasibility of the LMI (43) for the maximum possible value a∗ yields the
following parameters of the Lyapunov function:

P =











0.068 −0.040 0.037 0.167
−0.040 0.128 −0.070 −0.247
0.037 −0.070 0.070 0.175
0.167 −0.247 0.175 0.734











, α = 0.000017,

achieved at a∗ = 0.349.

Using Theorem 2, the invariant attraction domain of the closed loop system is constructed in
the same way as described in [1]. Omitting the details, we present the final value: c = 0.0036466.
The feasibility of LMIs was checked in Scilab [15].

Figure 4 shows the trajectories of the closed loop system in the coordinates θ (the abscissa axis)
and δ (the ordinate axis). The combined control law was applied. If the state of the system does
not fall into the attraction domain Ωc, then the control law described in [1, Section 5] is applied.
The condition V (ζ∗) = c is the criterion for crossing the boundary of the domain Ωc. Switching to
the control law (14) occurs upon reaching the domain Ωc. In the figures, the angular variables are
measured in degrees whereas the angular velocity in degrees per unit of the dimensionless time τ .
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Fig. 4. Trajectories of the closed loop system in the coordinates θ (the abscissa axis) and δ (the ordinate axis).
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Fig. 5. Graph of the variable ϕ.
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Fig. 6. Graph of the variable θ.

The thin line shows the trajectory of system (1) closed by the combined control law for ϕ̄ = 2◦ (see
formula (5.2) in [1]) and the initial conditions ϕ(0) = −5◦, ω(0) = 0, θ(0) = 1080◦, and δ(0) = 0.
The thick line shows the optimal trajectory of system (5.5) under the control law (5.6) of [1].

The graphs of the angles ϕ and θ are demonstrated in Figs. 5 and 6, respectively, where the
abscissa axis is the dimensionless time τ . According to Fig. 5, at the initial stage with the control
law (5.2) of [1], the variable ϕ stabilizes first at −2◦ and then at 2◦; subsequently, at an approximate
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time of τ ∼ 90, switching to the control law (14) occurs, and the trivial equilibrium is asymptotically
stabilized.

6. CONCLUSIONS

This paper has considered the problem of stabilizing the vertical position of an inverted pendu-
lum on a wheel. A two-parameter extension has been proposed for the control law simultaneously
stabilizing the pendulum angle (its deviation from the vertical line) and the wheel rotation angle.
The stabilization problem has been solved by the output feedback linearization method, with the
sum of the pendulum angle and the wheel rotation angle taken as the output. In contrast to the
previous studies [1], an additional factor has been introduced along with a dissipative term. A nu-
merical example has been provided to show that the new control law allows stabilizing the system
in the case where it cannot be stabilized by the previous control law. The attraction domain of the
trivial equilibrium has been estimated. This estimate has been constructed by solving a system of
linear matrix inequalities.

APPENDIX

Proof of Lemma 1. For k = 0, condition (18) takes the form s > 0 whereas condition (21) the
form

4λ2s2β(s − 1) > 0.

Due to the first inequality and the positivity of β, it follows that s > 1. The proof of Lemma 1 is
complete.

Proof of Lemma 2. By definition (19) of the value s̄ and β > 0, we directly establish that s̄ < 1.
Straightforward algebraic transformations in Maxima [13] yield

s̄− s0 =
λ2β2 + 8λ2β + 8λ2 + β

(β + 4)(1 + 2λ2)(λ2β + β + 2)
,

and the desired conclusion is obvious.

Proof of Theorem 1. Note that the lines k = 2λs and k = −2λs β
β+4 , which determine the

boundary of the definitional domain of inequality (18), have no intersection with the boundary of
the (possibly non-simply-connected) domain given by (20). Indeed, substituting k = 2λs into the
left-hand side of inequality (20) leads to the contradiction

−8λ4s3(β + 2) > 0.

By analogy, we arrive at a contradiction when substituting the equality k = −2λs β
β+4 into (20):

−8βλ2s2(β + 2)

(β + 4)2
> 0.

Thus, the boundary of the domain Ω is formed by the points (s, k) satisfying condition (19) and
turning the left-hand side of inequality (20) to zero. According to Lemma 2, for these values of s
the coefficient c0 in (23) takes negative values, i.e., the dependence of the left-hand side of (21) on
the variable k is an inverted parabola. Then the closed interval of values k for which inequality (21)
holds is of the form (28) provided the positive determinant of the quadratic inequality (21).

For s = 1, we have c2 = 0, and inequality (21) takes the form

−k2[2 + 2λ2(β + 4)] + k(4λ− 4λ3β) > 0,

which implies inequality (29). The proof of Theorem 1 is complete.
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